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Abstract 

We present formal specifications of a new abstraction, weak sets, which can 
be used to alleviate high latencies when retrieving data from a wide-area in- 
formation system like the World Wide Web. In the presence of failures, con- 
currency, and distribution, clients performing queries may observe behavior 
that is inconsistent with the stringent semantic requirements of mathemat- 
ical sets. For example, an element retrieved and returned to the client may 
be subsequently deleted before the query terminates. We chose to specify 
formally the behavior of weak sets because we wanted to understand the 
varying degrees of inconsistency clients might be willing to tolerate and to 
understand the tradeoff between providing strong consistency guarantees 
and implementing weak sets efficiently. Our specification assertion language 
uses a novel construct that lets us model reachability explicitly; with it, 
we can distinguish between the existence of an object and its accessibility. 
The specifications were instrumental in understanding the design space, and 
we are currently implementing the most permissive of the specifications in 

several types of Unix systems. 
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1    Motivation for Weak Sets 

Suppose you are browsing the World Wide Web (WWW) and want to display 
the .face files of all people listed on Carnegie Mellon's home page. Or, suppose 
through the on-line library information system (LIS) you want to get a list of 
papers by a particular author. Or, suppose you are a tourist in Pittsburgh and 
want to look at the on-line menus of all Chinese restaurants before choosing 
where to eat for dinner. 

Each of these kinds of queries returns a set of objects (.face files, card 
catalog entries, menus). What properties should we expect these sets to have? 
We claim that some standard properties of mathematical sets are desired, but 
others are not. In particular, we expect that: 

- Membership of an element is determined at some time between starting the 
query and finishing the query. Membership may not necessarily hold before 
the query, continuously throughout the run of the query, or even after the 
query completes. For example, if the LIS database is not up-to-date, we 
would not be surprised if an author's most recent paper is not listed; we 
would not go hungry if our restaurant search missed some (but not all) 
Chinese restaurants in Pittsburgh. 

- Order among elements does not matter. Hence retrieval of elements can be 
optimized. 

- There are no duplicates. (Though we probably would not be overly annoyed 
if there were.) 

- Elements in the set change infrequently. A restaurant's menu may change 
weekly or seasonally; a .face file, annually; an LIS entry, never. 

Because of the nature of the information repositories over which we run these 
queries, we would not expect concurrent reads and writes on the repository to 
be serializable. In particular, user A may be updating the information repository 
concurrently with user B who is reading from it. User B may see partial writes 
of A. This non-serializable behavior implies that: 

- Two people running the same query at the same time may obtain different 
sets of elements. 

- Running the same query twice in a row may return different sets of elements. 

Thus these sets provide weaker guarantees to the user than traditional set 
semantics or traditional distributed databases. However, for the kinds of wide 
area systems we consider, clients do not expect strong consistency properties, and 
implementations that provide stronger guarantees may prove inefficient. The key 
difference, of course, is that unlike transaction-oriented databases (e.g., a bank's 
set of accounts), there is no global consistency requirement that must be upheld 
across a set of information repositories in the WWW. This paper explores the 
design space for variations on the semantics of weak sets. 



1.1 Context for This Work 

Our original motivation for investigating the semantics of weak sets arose in the 
context of distributed file systems. Our target environment is a wide-area file 
system on a network of (possibly mobile) workstations. Failures are assumed to 
be common, e.g., disconnecting a mobile client from the network while travel- 
ing is an induced failure, yet consistency of data may be sacrificed to gain high 
performance and high availability. In a distributed file system, files and subdi- 
rectories in the same directory may reside on nodes different from each other 
and/or from the directory itself. 

To reduce the high latency of accessing a group of objects in a distributed 
file system, one of us (DCS) as part of a Ph.D. thesis is adding a set abstraction 
called dynamic sets to the Unix Application Programmer's Interface. In a typical 
file system, the expected behavior of the UNIX-like command Is, for example, 
is to list the files in the directory in some order (e.g., alphabetically), thus re- 
quiring that all files be accessed before Is returns. In a distributed file system, 
satisfying this requirement is prohibitively expensive; in the worst case, because 
of failures some files may no longer be accessible and so non-termination is pos- 
sible. By removing this requirement, we gain two advantages: (1) We can return 
information to the user more quickly by yielding partial information about the 
contents of a directory; and (2) we can implement such file system commands 
more efficiently by fetching files in parallel, fetching "closer" files first, and fetch- 
ing all accessible files despite network failures. The resulting behavior observed 
by the user is akin to a set's, where ordering of the items does not matter. Also, 
by supporting a set-like abstraction, we can support database-like queries, e.g., 
finding all files that satisfy a given predicate. 

1.2 Contributions of Paper 

To better understand the semantics of dynamic sets, in particular what proper- 
ties the implementor must guarantee to its clients, we decided to more formally 
specify their properties. In so doing, we realized that there is a wide range of rea- 
sonable semantics, resulting in our variations of weak sets. This paper presents 
some of the points in this range. The weakest of the behaviors corresponds ex- 
actly to the semantics of dynamic sets that we are implementing. 

In our first attempt at writing formal specifications of weak sets we ran up 
against two limitations of current formal methods. First, we need to deal more 
explicitly with the failure case due to the distributed nature of our context. 
In particular, we need to distinguish between the existence of an object, say an 
element of a set, and its accessibility; an element may satisfy a query but we may 
not be able to reach it because of a failure. Second, membership for weak sets 
is determined by invoking an iterator, which incrementally retrieves elements 
that satisfy a given query. Little work has addressed the formal specification of 
iterators (we discuss related work in Section 4); none that we are aware of is 
suitable for a concurrent or distributed environment 

In summary the two main contributions of this paper are: 



- A design space for the semantics of weak sets in a distributed environment. 
We present in Section 3 a set of dimensions for our design space and describe 
four of the interesting points in this space. 

- A novel specification construct needed to capture the inherent distributed 
nature of the application. In a distributed system where node and network 
failures are possible, knowing about the existence of an object does not imply 
being able to access it. We introduce a reachable function to our assertion 
language to help make this distinction. 

Secondary contributions of this paper are (1) a way of specifying iterators in 
the presence of concurrency and distribution and (2) a more precise semantics 
for dynamic sets, a new distributed file system abstraction [15]. 

Both the notion of weak sets and our specification technique can be applied 
to other contexts. A file system is a special kind of persistent object repository 
where files are objects and directories are collections. A distributed file system 
is a special kind of a wide-area information system, for which clients expect con- 
tinuous operation despite faults and transmission delays. So, though originally 
motivated to support distributed file systems, weak sets are more generally ab- 
stractions useful for both persistent object repositories, e.g., Cricket [14], EOS 
[5], Gemstone [10], and Thor [8] (see [1] for others), and wide-area information 
systems and their applications, e.g., the World Wide Web (WWW) [2], WAIS [7], 
and Gopher[ll]. Using an iterator-like operation to perform search and retrieval 
is common in these systems. 

1.3    Roadmap 

The rest of the paper is structured as follows: Section 2 introduces our spec- 
ification notation through the example of a specification of an immutable set, 
which includes the elements iterator; it explains special specification constructs 
used to accommodate concurrency and distribution in our model of computation. 
Section 3 presents the dimensions of our design space and four different points 
that would represent a reasonable semantics for weak sets in a distributed en- 
vironment. It presents, in particular, the different specifications of the elements 
iterator for a set abstraction. The specifications themselves are fairly intuitive, 
so those readers either desiring only a cursory understanding of the design space 
or familiar with the Larch specification method may choose to skip Section 2. 
We close with a discussion of related work and a summary of our contributions. 

2    Model of Computation and Specifications 

A computation, i.e., program execution, is a sequence of alternating states and 
(atomic) transitions starting in some initial state, «TQ: 

CO    Si    U\     ...    <Tn_i    Sn    <T„ 



Each transition, Si, of a computation sequence is a partial function on states. A 
history is the subsequence of states of a computation. States can changeover time 
through the invocation of a procedure or iterator; each invocation is atomic. Like 
a procedure an iterator is called; but unlike a procedure, it may suspend its state 
and later be resumed (invoked again), continuing from its suspended state. We 
consider the first call to an iterator as well as each resumption as an invocation 
of the iterator. Eventually, like a procedure, an iterator may terminate, returning 
normally or exceptionally. 

Specifications of an object's operations (procedures and iterators) determine 
the legal state transitions in a computation. We adopt the Larch style of specify- 
ing procedures, iterators, and types [6, 16]. Figure 1 gives a type specification for 
an immutable set, s, that exports the create, add, remove, and size procedures 
and the elements iterator. We now explain the specification language in more 
detail. 

set= type create, add, remove, size, elements 

constraint  s, = s} % set is immutable 

create = proc () returns (t: set) 
ensures tp0jt = {}  A new(l) 

add — proc (s: set, e: elem) returns (t: set) 
ensures tpo3t = sprc U {e}  A new(!) 

remove = proc (e: elem, s: set) returns (t: set) 
ensures tpo3t = sprc — {e}  A new(() 

size = proc (s: set) returns (i: int) 
ensures iposi = |spr«| 

elements = iter (s: set) yields (e: elem) 
remembers yielded : set initially {} 
ensures if yieldedprc C sfirst % still more to yield 

then yieldedpct — yieldedpr<. = {e) 
A yieldedpo,t C Sj,T3t 

AcS s/irje — yieldedprr 

A suspends 
else returns % yieldedprr — i/,r.i no more to yield 

Fig. 1. A Specification of an Immutable Set (Ignoring Failures) 



2.1    Specification Assertion Language 

We use the Larch Shared Language [6] as an assertion language with which 
to write the pre- and post-conditions of the specifications of procedures and 
iterators. LSL is also used to specify a type's value space for objects. We omit 
the details of LSL here since in our examples we use standard set notation 
for the functions on sets, e.g., U for set union and - for set difference. The 
salient features, which have been introduced elsewhere (e.g., [6]), of the assertion 
language are as follows: 

- We distinguish between an object and its value. An unsubscripted identifier, 
e.g., x, always denotes an object, and a subscripted identifier, e.g., x„, de- 
notes its value in a particular state, a. We also need to model objects that. 
are collections of other objects. In order to treat a contained object as part 
of the value of the containing object, we treat objects as special kinds of 
values. In Figure 2, we depict an array object, a, in state <r where a contains 
the objects {a,/?,7}; aa[2] = /?. 

state  o 

Fig. 2. An Array Object that Contains Three Objects 

For example, in the specification of a procedure, P, we use the subscripts pre 
and post to distinguish between the value of an object in the state in which 
P is called (the "pre-state") and its value in the state in which P returns 
(the "post-state"). For an iterator, /, pre and post distinguish between the 
pre- and post-states for each invocation (i.e., the initial call and subsequent 
resumptions); we additionally use the subscript first to denote the state in 
which the iterator is first called and last for the state when the iterator 
terminates.1 

1 For the first invocation of an iterator, the "first-state" and first "pre-state" are the 
same: similarly, for the last invocation the "last-state" and last "post-state" are the 
same. 



- We assume a special object in the state called terminates whose value ranges 
over normal and exceptional termination conditions. We write returns to 
stand for the assertion that the operation terminates normally. We write 
suspends in iterator specifications to stand for the assertion that the itera- 
tor has yielded control back to the caller normally (but the iterator has not 
yet terminated). 

- The assertion new(x) says that x is an object in the domain of the post-state 
that was not in the domain of the pre-state. 

In the specification of create in Figure 1, tpo,t stands for the value of the 
newly created object t returned as a result of invoking create. The value is the 
empty set, {}. 

We need to add two new constructs to our assertion language to deal specif- 
ically with the distributed nature of our application. We assume a model of a 
distributed system that is a set of connected nodes, not necessarily strongly con- 
nected. Processes (e.g., clients and servers) communicate via remote procedure 
calls. Thus the execution of an operation by a client at one node might actually 
involve a remote call to the operation exported by a server at a different node. 
Nodes may crash and communication links may fail. These failures may lead to 
network partitions, which implies that a process at one node may not be able 
to access objects residing at a node in a different partition. We assume we can 
detect failures, e.g., those signaled from the lower network and transport layers 
of the communication substrate. We write fails to stand for the assertion that 
an operation terminates with a special "failure" exception, denoting any kind of 
failure, e.g., a timeout, node crash, or link down, due to the distributed nature 
of the system. 

The possibility of a network partition means that a caller may not be aide to 
access a remote object. The caller will be able to detect this situation because 
the "failure" exception will be signaled. The unfortunate situation is when an 
accessible object (like a collection) contains ("points to") other objects where 
the collection object may be accessible, but one or more of the contained objects 
may not be. For a collection object, x, we will assume a function reachable^-,,) 
which determines the set of objects contained in x that are accessible in state a. 
For example, in Figure 2, reachable^) = {a,ß, 7}. If« is on node N and a. 
ß, and 7 are on nodes A, B, and C, respectively, and there is a partition between 
N and C in state p then reachable(ap) = {a,ß}. 

2.2     Specification of Procedures, Iterators, and Typos 

In the specification of a procedure, P, the predicate in the requires clause is 
P's pre-condition. An omitted requires clause stands for the trivial predicate 
"true." The modifies clause is shorthand for a predicate that asserts that all 
objects not listed do not change in value: hence the value of an object listed 
explicitly in a modifies clause is allowed to change (but does not have to) 
as a result of calling P. An omitted modifies clause means no object may be 
mutated. The conjunction of the predicate denoted by the modifies clause and 



the predicate in the ensures clause is the specification of P's post-condition. 
In Figure 1, all the operations have the trivial pre-condition; none modify their 
arguments. 

The specification of an iterator, /, is similar to that for a procedure except 
the interpretation is slightly different since its behavior is slightly different. The 
pre-condition must hold each time the iterator is invoked. The post-condition 
holds each time the iterator yields and/or terminates. In the elements iterator 
in Figure 1, each time the iterator is invoked an element not already yielded is 
returned to its caller; this process continues until all elements in the original set 
(s/irst) have been yielded. 

For convenience, we use history objects (like history variables [12]) in the 
specification of iterators to help keep track of history information. These are 
local to the iterator and not accessible to its clients.2 The clause 

remembers x : T initially init 

introduces the history object x of type T with an initial value init. We require 
that for any history object, x, for an iterator 7, that in any state, first, in which 
/ is first called, xjirst = init. In the specification of elements in Figure 1, the 
yielded set is a history object that keeps track of the elements already yielded; 
it starts out empty. 

A type specification is a set of specifications of the procedures and iterators 
exported by the type. In the presence of concurrent processes, if two or more 
processes can access a shared, mutable object, then the effect of one may violate 
a property assumed by another. To capture what properties all processes must 
agree to uphold, we use a constraint clause in the specification for type T. The 
predicate we write in this clause states a history property of all computations 
involving any object of type T. (We borrow this idea from Liskov and Wing's 
technique for specifying subtypes [9].) A history property must hold of all succes- 
sive pairs of states in a computation, and thus we formulate them as predicates 
over pairs of states. More formally, the constraint clause that appears in the 
specification of type T, constraint P(xi,Xj), stands for the predicate, for all 
computations, (To  Si  a\   ...   an-i  Sn  &n, 

Vi:T Vl<i<n,l<j<n.i<j=> P(xai,xaj). 

Notice that we do not require that <r;- be an immediate successor of <r,- in the 
computation. 

We capture the immutability property of sets in Figure 1 in the constraint 
clause. It requires that a set does not change in value, even in between invoca- 
tions. 
2 For brevity in our specifications, we omit them from the modifies clause; their values 

do not change unless otherwise explicitly specified. 



3    Exploring the Design Space 

Sets are unordered collections of elements with no duplicates. A set is denned 
by the members it contains; hence membership of a element in a set is the key 
determining factor of what the set's value is. The operation in our set interface 
that defines membership is the elements iterator, so this section presents only 
the specification of this iterator; the differences in its specifications determine 
the differences in the semantics of weak sets. 

The cases we need to consider are as follows: 

- The collection over which we are iterating may or may not be.mutated. 
• If the collection can mutate, then the interesting cases are whether it 

can only grow, only shrink, or both grow and shrink. 
- The items in the collection may or may not be mutated. 
- If mutations are allowed, then either the iterator or some other process (like 

the caller) may cause them. 
- In a distributed environment where we need to accommodate failures, wo 

need to determine what the iterator's behavior should be if it cannot access 
all objects in the collection. 

This last dimension is worth further elaboration. Communication failures 
have two effects. First, they could prevent an object that is known to be a 
member of the collection from being accessed. In the specifications that follow, 
we use the reachable function to help us determine the accessibility of objects 
in a given state. Second, they could prevent an iterator from seeing mutations 
to the collection. This second effect is subtle since it implies that the collection 
object itself may be distributed; logically there is a single object, but physically 
different parts of it may be scattered across many nodes, or the single "logical" 
object may be represented by a set of replicas. Whenever there is such distributed 
state, there is always the possibility of inconsistent data. One node may have 
more up-to-date information than another; cached data may be stale. 

There are two main ways of handling the problem of effects from commu- 
nication failures[3]: pessimistically and optimistically. The pessimistic approach 
assumes that if a failure occurs, an update might have been missed (e.g., in the 
absence of a quorum), and any data available might be stale. Thus, it would 
be most appropriate to return a failure. The optimistic approach assumes the 
reverse is true, and allows access to the data even though it may be stale. The 
appropriate choice depends on the number of failures, and the tradeoff between 
high availability and consistency of the data. Thus, in our design space, along 
the dimension of dealing with failures, we will consider two cases: pessimistic, 
where if a failure is detected then the iterator should immediately terminate, and 
optimistic, where the iterator tries to make progress with the expectation that 
in a later invocation inaccessible objects will become accessible again (because 
the failure has been repaired by that time). 

In this section, we give four of the more interesting points in our design space: 



- An immutable set where failures may arise. (Figure 1 of the previous section 
gave an example of an iterator for an immutable set where failures were 
ignored.) 

- A mutable set that can grow and shrink, but where mutations done after 
some point in time are not seen by the iterator. 

- A mutable set- that only grows. It handles failures pessimistically. 
- A mutable set that can grow and shrink. It handles failures optimistically. 

Two dimensions we will not discuss in this section are who is responsible for 
mutations and what may be mutated. For a concurrent or distributed system it 
is reasonable to assume that the iterator does not mutate the set (it might keep 
a cached version, which is a way to implement a history object), but that any 
other process might. And, to keep things simple, we will assume that items in 
the set do not change; we could model this by the deletion of an old item from 
the set followed by the addition of a new item. 

A choice of one behavior over another has serious implications for the im- 
plementor. The more restrictive the specification, the harder it is to implement 
efficiently in a distributed system. For instance, preventing mutation requires 
distributed locking; allowing only growth requires the ability either to prevent 
certain mutations or to cache the entire set. Although this functionality may be 
mandatory for some high-integrity systems (e.g., a bank's distributed database), 
it may too constraining for low-integrity systems, especially loosely-coupled ones 
(e.g., WWW). 

3.1     Immutable Set with Failures 

constraint  Si = SJ 

elements= iter(s: set) yields (e: elem) signals (failure) 
remembers yielded : set initially {} 

ensures  if yieldedpre C reachable(s/;r.st) 
then yieldedpct — yieldedpre = {e} 

A yieldedpost Q s/irst 
A e € reachable(s/ir3t) 
A suspends 

else if yieldedpre = reachable(s/irst) A yieldedpTe C Sf,T$t 
then fails 
else returns % yieldedprc = sjwst 

Fig. 3. Immutable Set with Failures 

The first specification (Figure 3) describes an iterator for an immutable set. 



As before, the constraint clause asserts the immutability property. The yielded 
set starts out empty and at each invocation it grows by one element unless a 
failure is detected. The ensures clause handles three cases: In the normal case 
of suspending the iterator, if there are still elements to yield (the set of elements 
already yielded is a strict subset of the set of reachable elements of the original 
set, s), then yielded grows by an element of s that is not already in yielded. A 
failure occurs if everything reachable has been yielded and the reachable set of 
elements is a subset of the original set. Finally, if all elements of the original set 
have been yielded, we can terminate the iterator. 

Because the set is immutable, we can use the value of s in any state between 
the first-state and last-state. Our use here of s/,rj« allows us to make a sharp 
distinction between this specification and the one in the next section. 

A less stringent specification would allow mutations to occur to the set when 
no one is iterating over it, but prohibit mutations during iteration. We could 
relax the constraint to be: 

constraint V i < k < j . (terminatesi ^ suspend A terminatesj ^ suspend 
A terminatesk = suspend) => (s, = sjt = Sj) 

which captures the property that between the first-state and last-state of the 
iterator, the set does not change. Thus mutations may occur between different 
uses of the iterator, but not between invocations of any one use. 

Choosing this behavior, or even the less stringent one, has serious perfor- 
mance implications since typical implementations would use locks to synchro- 
nize access to the set and its elements. Iterating over a large, geographically 
dispersed set of objects is time consuming, especially if a human is responsible 
for flow control. The use of mobile (and possibly) disconnected computers may 
extend the period a lock is held indefinitely, thereby making it unacceptable to 
place such tight restrictions on the system. However, in a environment in which 
mutation and failures are rare, and the desire for data integrity is high, this 
behavior is an appropriate choice. 

3.2    Mutable Set with Loss of Mutations 

The only visual difference between the specification in Figure 4 and the previous 
one in Figure 3 is the change in the constraint clause. Here, the predicate is 
"true"; the set may change arbitrarily over time. 

The semantic difference is much greater, however. The iterator will yield only 
those elements of s as it appears the first time the iterator is called. Since in 
between subsequent invocations the set may change, the iterator may miss el- 
ements added to s after the first invocation and/or have yielded elements that, 
have been removed. Thus, it "loses" mutations between the first-state and last- 
state. If clients were concerned about these possible losses, after the iterator 
terminates (returns), they can run the iterator again and hope to catch dis- 
crepancies. The failure case is handled as in the previous specification, based on 
the value of s in the first-state. 



constraint  true 

elements= iter(s: set) yields (e: elem) signals (failure) 
remembers yielded : set initially {} 

ensures  if yieldedpre C reachable(a/ir3t) 
then yieldedpct — yieldedpre = {e} 

A yieldedpoat Q sjirst 
A e € reachable(s/irst) 
A suspends 

else if yieldedpre = reachable(s/;rat) A yieldedpr<- C s/.Vst 
then fails 
else returns % yieldedpre = 3first 

Fig. 4. Mutable Set, Loss of Some Mutations 

The implementation implications are not nearly as severe as in the immutable 
set case. This specification relaxes the need for locking since mutations are al- 
lowed to s after the initial invocation of the iterator. However, it still assumes 
that the set can be obtained in one atomic action (to get a snapshot of s in the 
first-state), and distributed atomic actions are extremely expensive in practice. 
Thus, this model is appropriate in environments in which failure is rare, and the 
consistency of the set is important. Note that for neither this nor the previous 
specification did we need to worry about failures masking mutations to s. 

3.3    Growing-only Set, Pessimistic 

The specification in Figure 5 allows the set only to grow and takes a pessimistic 
approach to consistency in the presence of failures. 

The constraint clause asserts that the set may only grow. Unlike in the 
previous two specifications, each invocation uses the current state of s, i.e., the 
pre-state, not first-state. If there are still elements to yield based on the remem- 
bered set and the current state of the set, then we choose a reachable one and 
yield it. If there are no more elements to yield, we terminate. Otherwise, because 
we cannot reach an element that we know is in the set, we fail. Alternatively, 
one could easily specify the iterator to use a quorum or token-based scheme by 
changing the last line. 

Notice that since the set may grow faster than the iterator yields elements 
from it, an iterator satisfying this specification may never terminate. Though 
the iterator could yield elements ad infinitum, in practice this behavior will not 
occur if objects are consumed more rapidly than they are produced. 

Just as for the specification for the immutable set with failures (Figure 3), 
we could modify the constraint clause to permit arbitrary mutations between 



constraint   Si C s} 

elements= iter(s: set) yields (e: elem) signals (failure) 
remembers yielded : set initially {} 

ensures   if yieldedprc C reachable(spr<!) 
then yieldedp03t — yieldedprc = {e} 

A yieldedpost Q Spre 
A e € reachable(3prc) 
A suspends 

else if yieldedVrc = spTe 
then returns 
else  fails 

Fig. 5. Growing-Only Set, Pessimistic Failure Handling 

different runs of the iterator and growth only between invocations of any one 
run. Implementing this less stringent behavior is not difficult. To ensure that sets 
only grow during the iterator's use of the set, we can prevent objects from being 
deleted until the iterator terminates. Alternatively, we can create copies of any 
deleted objects and then garbage collect these "ghost" copies upon termination. 

3.4     Growing and Shrinking Set, Optimistic 

The behavior of elements captured in our last specification (Figure 6) is the 
weakest of the four presented in this paper. There are no restrictions on mutation, 
there is only a weak guarantee about what is yielded, and it takes an optimistic 
approach to consistency. 

As in the specification for the mutable set with losses (Figure 4), we allow 
the set to grow and shrink in between invocations. Here, however, we will not 
miss any additions since the yielded element is based on the current state of the 
set, not the state at the first invocation. However, we may still miss deletions, 
which means we may yield elements that are subsequently deleted. 

We might specify that the yielded set will be a subset of the value of the 
set at some state between the first-state and the last-state, i.e., yicldediu.,t C .s, 
for some i between first and last. However, in the presence of deletions this may 
not be the case. An alternative would be to specify that yicldedlasl D s, for 
some i between first and last. However, this is not strong enough because this 
allows yieldedia,t to have elements that were never in st. The specification we 
give requires that any element yielded must actually be in the set, for some state 
of the set between the first-state and last-state. 

Orthogonal to handling mutations is handling failures. This specification 
takes an optimistic approach since it may never return if a failure is detected. 



constraint  true 

elements= iter(s: set) yields (e: elem) 
remembers yielded : set initially {} 

ensures  if 3e € spre ■ e jtyieldedprs 

then yieldedpost — yieldedpre = {e} 
A e € reachable(spre) 
A suspends 

else returns 

Fig. 6. Growing and Shrinking Set, Optimistic Failure Handling 

The post-condition captures this blocking behavior by testing for the existence 
of some element of spre ( Be € spre...) not yet yielded, but yielding, of course, 
only a reachable element (e G reachable(spre)). We would not block if the 
test were for the existence of some element in the reachable set of spre (i.e., 
3e € reachable(spre)...). 

The guarantee on what is yielded may seem too weak to be usable, but it is 
entirely appropriate for the kinds of systems that we expect to be common in 
the future: loose collections of reference objects (e.g., encyclopedias or papers in 
archival journals) that are stored across many organizations. As mentioned in the 
introduction, several examples of such systems currently exist, and many more 
will be built. In these systems, performance and availability are key concerns, 
and since reference objects rarely or never change, inconsistent or stale data will 
rarely be seen. 

4    Related Work 

Our analysis was greatly influenced by Garcia-Molina and Wiederhold's [4] tax- 
onomy of queries. They use two dimensions for classification, and ignore com- 
munication failures. Consistency is the degree to which application constraints 
on data can be satisfied while currency is concerned with the version of the data 
returned by the query. In our terminology, set membership corresponds to con- 
sistency and mutability to currency. The specification in Figure 3 corresponds 
to a strong consistency (serializable), ajir,t-vintage query; the one in Figure 4, 
to weak consistency, <TjiTit-vintage, and the last two specifications are both no 
consistency, ajirst-bound. However, as discussed in the introduction, the weak 
semantics in Figures 5 and 6 may be most appropriate for modem wide area 
systems. 

Tangential to the specification method we present here is work related to 
specifying iterators, which is the most interesting part of our specifications. 



Wing's thesis [16] presents a formal approach to specifying iterators for CLU. 
We borrowed the main ideas needed: the distinction between the first and sub- 
sequent invocations, the distinction between suspension and termination, and 
the utility of history objects. In a similar Larch two-tiered style for specifying 
iterators for C [6], the specification of the control abstraction is broken into 
the specification of three C functions: one for initializing an iterator, one for 
getting the next element, and one for terminating the iterator; the equivalent 
of our history objects (specification variables) are defined in the underlying as- 
sertion language, LSL. Finally, Reynolds describes the semantics of iterators in 
terms of higher-order procedures in the context of the sequential programming 
language Algol-W [13]. None of these pieces of work address issues like failure, 
concurrency, and distribution because their context is a sequential programming 
language. 

Also, in all three pieces of work, the researchers advise against allowing mu- 
tation to the collection object. The rationale given for LCL is that such behavior 
would be inefficient to implement. Ironically, in distributed systems just the op- 
posite is true. The implicit motivation given for Algol-W is that the behavior 
would be hard to reason about. The wide variation of possible behaviors within 
our design space justifies that reasoning about iterators can indeed be tricky. 

5    Summary and Status 

The main contribution of this paper is a presentation of formal specifications 
of some of the more interesting design points for a new abstraction, weak sets. 
These sets must operate in a very general context, where concurrency and fail- 
ures in a distributed system cannot be ignored. The power of our specification 
technique enabled us to clearly see the design alternatives, allowing us to choose 
an acceptable design point for our implementation. 

We are currently implementing the weakest design, presented in Section '.IA, 
on a variety of Unix-like systems (Mach 2.6, 0SF1, Linux). Our decision to 
choose this particular alternative was based on the desire to maximize the us- 
ability of the system while preserving good performance and ease of implementa- 
tion. We expect users will want some minimal guarantee about the relationship 
between what history information they have accumulated about a set and its 
observable (and reachable) current state. At the same time anything stronger is 
unnecessary; users are usually willing to tolerate some inconsistency for a gain in 
performance. We hope to prove the performance benefits resulting from the use 
of a weak consistency semantics by evaluation of our system when it. is complete. 
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